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ABSTRACT

Can we train a 3D molecule generator using data from dense regions to generate
samples in sparse regions? This challenge can be framed as an out-of-distribution
(OOD) generation problem. Existing works on OOD generation primarily focus
on property shifts. However, the distribution shifts may come from structural
variations in molecules, such as certain types of scaffolds, dubbed as physical
priors. This work introduces a novel and principled diffusion-based generative
framework, termed Geometric OOD Diffusion Model (GODD), which enables
training a generator on data-abundant distributions to generalize to data-scarce
distributions under structure shifts. Specifically, we propose utilizing a designated
equivariant asymmetric autoencoder to capture distributional physical priors. The
asymmetric module allows generalization to unseen, out-of-distribution structural
variations. As these captured physical priors represent distinct distributions, they
can steer the generation of samples that are not in dense regions. We demonstrate
that with these encoded structural-grained distributional physical priors, GODD
does not need to train with any molecules from the sparse regions. We con-
duct extensive experiments across various out-of-distribution molecule generation
tasks using benchmark datasets. Compared to alternative baselines, our approach
shows a significant improvement of up to 65.6% in success rate, defined based on
molecular validity, uniqueness, and novelty. Additionally, we show that our gen-
erative framework, steered by physical priors, can be readily adapted to canonical
fragment-based drug design tasks, exhibiting promising performance.

1 INTRODUCTION
Table 1: Preliminary results on QM9. In
distribution, OOD I and OOD II encom-
pass molecules with high-, low-, and rare-
frequency scaffolds, respectively. Gener-
ated samples from EDM and GeoLDM,
which are trained on molecules with
source scaffolds, dominantly belong to the
in-distribution scaffold set, indicating that
they can only reflect the training data dis-
tribution.

QM9 Scaffold Propotion (%)

Domains In-dist OOD I OOD II
# Molecules 100,000 15,000 15,831
# Scaffolds 1,054 2,532 12,075

Dataset 76.4 11.5 12.1

EDM 91.4 2.7 4.9
GeoLDM 90.6 3.5 5.9

Geometric generative models are proposed to approx-
imate the distribution of complex geometries and are
used to generate feature-rich geometries (Watson et al.,
2023; Xie et al., 2022). There has been fruitful research
progress on 3D molecule generation based on geomet-
ric generative modeling. Recent representative mod-
els for generating 3D molecules in silicon include au-
toregressive (Luo & Ji, 2022), flow-based models (Gar-
cia Satorras et al., 2021), and diffusion models (Hooge-
boom et al., 2022). Among others, diffusion models
have demonstrated their superior performance (Hooge-
boom et al., 2022). However, these generative models
require tremendous data to mimic the training distribu-
tion. They can barely generate samples that are rare
or even absent in the training set, hindering their ap-
plicability to de novo molecule generation (Walters &
Murcko, 2020).

Taking a canonical molecule dataset – QM9 as our run-
ning example, diverse scaffolds of molecules have vary-
ing proportions and frequencies in nature (Ramakrishnan et al., 2014; Wu et al., 2018). Our initial
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findings indicate that existing diffusion-based molecular generative models, such as EDM (Hooge-
boom et al., 2022) and GeoLDM (Xu et al., 2023), effectively capture the training data distribution,
generating molecules with high-frequency scaffolds. However, these models struggle to generate
molecules with rare scaffolds (see Table 1). With the expressive power of state-of-the-art diffusion-
based generators, we ask: Can we train a diffusion model using data from dense regions to generate
realistic and valid 3D samples in sparse regions?

To address the data scarcity issue, we propose leveraging the concept of out-of-distribution (OOD)
generalization and framing the problem as OOD generation. The intuition is that if we can train
a model with a source data-dense region and it can generalize to new, desired distributions, then
generating realistic and valid 3D molecules in data-sparse regions becomes feasible. Our objective,
therefore, is to train a generator with data-abundant distribution and steer it to generate samples
in sparse regions. The distribution shift generally comes from properties or core fragments, such
as certain types of scaffolds or ring-structures (Wu et al., 2018; Zhuang et al., 2023). Certain sets
of fragments or properties depict distinct distributions. Existing works on OOD generation mainly
focus on property shifts (Lee et al., 2023; Klarner et al., 2024). They usually utilize a naive property
predictor for guidance, where the properties are scalars. Due to the sparsity of the 3D fragments, it
is imperative to design new OOD generative frameworks to deal with fragment shifts.

This paper introduces a novel and principled GODD, which utilizes the physical priors to steer the
generation of 3D molecules in the data-sparse regions. The crux of enabling out-of-distribution gen-
eration under fragment shits is to learn generalizable and equivariant representations of the fragments
inducing distribution shifts. The learned representations, a.k.a distributional physical priors, then
are properly baked into the denoising process. Specifically, we leverage an asymmetric encoder-
decoder architecture to characterize the physical priors, motivated by the success of asymmetric
autoencoders in generalizable representation learning. This asymmetric design exhibits transferable
learning capability across distributions, allowing for the generalization of unseen fragment varia-
tions, including out-of-distribution scaffolds or ring structures. In summary, our primary contribu-
tions are summarized as follows:

First, to the best of our knowledge, we are the first study to tackle 3D molecule generation in data-
sparse regions and frame the problem as an out-of-distribution generation problem under fragment
shift. We adopt the concept of asymmetric encoder-decoder to characterize the physical priors,
which are used to steer the generation of valid 3D molecules in data-sparse regions. Moreover,
We ensure and theoretically prove that the physical priors extracted by the designed asymmetric
autoencoder are SE(3)-equivariant. Our proposed framework does not require additional training
on OOD data.

Second, we evaluate out-of-distribution generation setting with benchmarking datasets. We compare
it with alternative baselines, including vanilla generative models, such as EDM, GeoLDM, EquiFM,
GeoBFN, and EEGSDE (Hoogeboom et al., 2022; Xu et al., 2023; Song et al., 2023a;b; Bao et al.,
2023), and OOD generative models, including MOOD and CGD (Lee et al., 2023; Klarner et al.,
2024). Besides, we empirically validate the effectiveness of asymmetric design in OOD generation
with ablation studies. Extensive experimental results show that the physical priors enable the model
to generate molecules with desired OOD fragment variations in data-sparse regions. The success rate
of molecules generated by GODD is improved by up to 65.6% compared with existing methods.

Third, we demonstrate that our generative framework, guided by physical priors, can be applied to
fragment-based OOD generation. We verify that our framework can be readily adapted to link
multiple fragments under OOD settings. Specifically, we evaluated our method with a canoni-
cal fragment-based drug design task—linker design—and show that the proposed method exhibits
promising performance in fragment linking within the OOD context (Igashov et al., 2024).

2 PROBLEM SETUP AND PRELIMINARIES

2.1 PROBLEM DEFINITION

Notations: Let d be the dimensionality of node features; a 3D molecule can be represented as a
point cloud denoted as G = ⟨x,h⟩, where x = (x1, . . . ,xN ) ∈ RN×3 is the atom coordinate matrix
and h = (h1, . . . ,hN ) ∈ RN×d is the node feature matrix containing atomic type, charge features,
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Figure 1: The Illustration of Proposed GODD Framework.
(a): GODD utilizes OOD fragments as physical priors to steer the generation toward data-sparse
regions. (b): During training (gray pipeline): I. Encoder (E) first maps fragments (i.e., scaf-
fold/ring) into the latent features as physical priors. These latent features would be decoded (D)
for reconstructing the original molecule. This asymmetric encoder-decoder architecture enhances
the generalization of representing unseen fragments for generating OOD samples; II. GODD first
diffuses the molecule into noises and then utilizes physical priors to steer the denoising process
toward molecules with given fragments. During generation (red pipeline): GODD receives the
OOD fragment and encodes it as the physical prior. Then, the model denoises from sampled Gaus-
sian noise under the guidance of physical prior, thereby generating novel and valid molecules with
target fragment variations.

etc. For a given molecule G, the fragment is a subgraph of the original molecule, represented as
Gf = ⟨xf ,hf ⟩. Specifically, the scaffold is its structural framework (Bemis & Murcko, 1996),
termed as “chemotypes”. Except for scaffolds, the ring structures are also essential fragments in
chemistry and biology (Karageorgis et al., 2014; Ward & Beswick, 2014; Ritchie & Macdonald,
2009), which could also be a factor that incurs the distribution shift.

Out-of-Distribution (OOD) Generation Problem: We consider the problem of out-of-distribution
generation in the following two scenarios: ODD scaffold and OOD ring-structure generation, re-
spectively. Given a collection of molecules as training samples and corresponding in distributional
fragment set (including scaffold or ring-structure) denoted as {GI}, {GfI }, respectively. OOD gener-
ation aims to learn a generative model that can generate valid and novel molecules falling into a new
distribution, where the corresponding fragment set is {GfO}, and the OOD fragment set is unseen
during training, a.k.a. {GfI } ∩ {G

f
O} = ∅. We briefly review fragment-based drug design and OOD

generation in Appendix L.

2.2 PRELIMINARIES

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015) are latent variable models for
learning distributions by modeling the reverse of a diffusion process (Ho et al., 2020). Given a data
point x0 ∼ q(x0) and a variance schedule β1, . . . , βT that controls the amount of noise added at
each timestep t, the diffusion process or forward process gradually add Gaussian noise to the data
point x:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI). (1)
Generally, the diffusion process q has no trainable parameters. The denoising process or reverse
process aims at learning a parameterized generative process, which incrementally denoise the noisy
variables xT :1 to approximately restore the data point x0 in the original data distribution:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where the initial distribution p(xt) is sampled from standard Gaussian noise N (0, I). The loss for
training diffusion model LDM := Lt is simplified as: LDM = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
, where

w(t) = βt

2σ2
tαt(1−ᾱt)

is the reweighting term and could be set as 1 with promising sampling quality,

and xt =
√
ᾱtx0+

√
1− ᾱtϵ. We provide a detailed description of diffusion models in Appendix A.

3
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3 METHOD

Overview. Our objective is to train a generator with rich in distribution data that can be steered to
a new distribution in a low-data regime. Generally, fragment variations, such as scaffold or ring-
structure variations, are the main cause of the distribution shift in the context of OOD molecule
generation (Ramakrishnan et al., 2014). We particularly focus on the geometric OOD genera-
tion problem where in distribution scaffold/ring-structure set, represented as {GfI }, and the OOD
scaffold/ring-structure set, denoted as {GfO}, are different. In other words, the OOD scaffold/ring-
structure set is unseen during training — {GfI } ∩ {G

f
O} = ∅.

With the superior capability of diffusion models for 3D molecule generation, we propose to address
the geometric OOD molecule generation problem with a diffusion engine. However, as illustrated in
Section 1, the vanilla diffusion models or OOD methods have difficulty generating OOD molecules
under fragment shifts. In this regard, we propose to incorporate the in-distribution fragments into the
denoising process during training and the OOD ones into the denoising during generation. These
fragments are learned as physical priors to steer the generation. Nevertheless, characterizing the
physical priors that can transfer to new distributions is challenging because the OOD fragments are
not seen during training. Inspired by the impressive generalizability of asymmetric autoencoder in
both vision and language fields (He et al., 2022; Hu et al., 2022), we adopt an asymmetric encoder-
decoder architecture to capture the physical priors in training distribution and to generalize to unseen
OOD fragments. The proposed GODD workflow is provided in Figure 1.

3.1 EQUIVARIANT ASYMMETRIC AUTOENCODER

Distributional Physical Prior. For a given fragment Gf = ⟨xf ,hf ⟩, the distributional physical
prior learned from the fragment (F) is defined as F = ⟨fx, fh⟩. In the case of scaffold and ring-
structure OOD generation, the fragments are atoms on the scaffold/rings.

Asymmetric Autoencoder. The asymmetric autoencoder comprises an encoder E , which maps
fragment Gf to a latent space, represented as fx, fh = E(xf ,hf ). Additionally, it includes a de-
coder D that reconstructs the latent representation back to the original molecular space, denoted as
x̂, ĥ = D(fx, fh). Our autoencoder reconstructs the input by predicting the coordinates and features
of complete atoms. The loss function computes the mean squared error (MSE) between the recon-
structed and original molecules in the original molecular space. The autoencoder can be trained by
minimizing the reconstruction objective, expressed as f(G,D(E(Gf ))). The encoder of the autoen-
coder functions solely on the fragment Gf , while the decoder reconstructs the input from the latent
representation to the complete molecule G. This asymmetric encoder-decoder design offers promis-
ing generalization (He et al., 2022) to the latent features. These features serve as physical prior and
empower the model to generate molecules with unseen fragments.

Equivariant Asymmetric Autoencoder. However, naively applying autoencoder in the geometric
domain is non-trivial. The diffusion model within the overall framework operates in 3D molecular
space and necessitates conditions to be either equivariant or invariant. Therefore, it is crucial to
ensure the equivariance of the conditions extracted by the autoencoder. To achieve this, we design
our asymmetric autoencoder based on the Equivariant Graph Neural Networks (EGNNs) (Satorras
et al., 2021), thereby incorporating equivariance into both the encoder Eϕ and decoder Dϑ, where
ϕ and ϑ are two learnable EGNNs. equivariant design ensures that the latent representations fx
and fx encoded by the encoder from fragments are 3-D equivariant and k-d invariant, respectively.
Consequently, Equivariant Asymmetric Autoencoder (EAAE) extracts both invariant and equivariant
conditions, as expressed below:

Rfx + t, fh =Eϕ(Rxf + t,hf ) (3)

Rx̂+ t, ĥ =Dϑ(Rfx + t, fh), (4)
for all rotations R and translations t. Detailed architecture information about the asymmetric au-
toencoder can be found in Appendix B. The point-wise latent space adheres to the inherent structure
of geometries Gf , which facilitates learning conditions for the diffusion model and results in high-
quality molecule design.

Following (Hoogeboom et al., 2022), to ensure that linear subspaces with the center of gravity always
being zero can induce translation-invariant distributions, we define distributions of fragments xf ,
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Physical 
Prior

Steering the DenoisingOOD Fragment

Figure 2: The Illustration of Generating OOD Samples with GODD: given an OOD fragment as the
physical prior, our trained GODD can generate valid, unique, and novel molecules containing the
target fragment.

physical priors fx, and reconstructed x̂ on the subspace that
∑

i x
f
i (or fx,i and x̂i) = 0. Then the

encoding and decoding processes can be formulated by qϕ(fx, fh|xf ,hf ) = N (Eϕ(xf ,hf ), σ0I)

and pϑ(x,h|fx, fh) =
∏N

i=1 pϑ(xi, hi|fx, fh) and the EAAE can be optimized by:

LEAAE(G,Gf ) = Eqϕ(fx,fh|xf ,hf )pϑ(x,h|fx, fh)− KL[qϕ(fx, fh|xf ,hf )||
N∏
i

N (fx,i, fh,i|0, I)],

(5)
where Eqϕ(fx,fh|xf ,hf )pϑ(x,h|fx, fh) is the asymmetric reconstruction loss and
is calculated as L2 norm or cross-entropy for continuous or discrete features.
KL[qϕ(fx, fh|xf ,hf )||

∏N
i N (fx, fh|0, I]) is a regularization term between qϕ and standard

Gaussians. LEAAE is standard VAE loss and is the variational lower bound of log-likelihood. The
equivariance of the loss, which is crucial for geometric graph generation, is expressed as follows:
Theorem 3.1. LEAAE is an SE(3)-invariant variational lower bound to the log-likelihood, i.e.,
for any fragment ⟨xf ,hf ⟩ and molecule ⟨x,h⟩, we have ∀ R and t, LEAAE(x,h,x

f ,hf ) =
LEAAE(Rx+ t,h,Rxf + t,hf ).

The theorem ensures that the asymmetric autoencoder is equivariant so that the extracted condition
satisfies the equivariant constraints, thereby ensuring that the conditional denoising of the geometric
diffusion model is also equivariant. Detailed proof of Theorem 3.1 is given in Appendix C. In
summary, EAAE first inputs the physical prior Gf into the encoder E to obtain equivariant latent
features fx and invariant latent features fh. These features have two purposes. One is to continue to
be input into the decoder D for reconstruction to constrain the latent features. Secondly, it is used as
the condition to supervise and control the diffusion model. The specific method of the second part
will be explained in the following section.

3.2 PHYSICAL PRIOR STEERED DIFFUSION MODEL

With the equivariant latent features ⟨fx, fh⟩, now we can utilize these features as domain supervi-
sors for reconstructing structures G while still keeping geometric properties. The latent features
encoded by the asymmetric encoder from the same molecule serve as the condition for the diffusion
model. Such a similar manner to self-supervised learning enables the model to generate molecules
with target structural variations, and thereby, the proposed method can perform adaptive molecule
generation.

Generally, geometric diffusion models are capable of controllable generation with given conditions
s by modeling conditional distributions p(z|s). This modeling in DMs can be implemented with
conditional denoising networks ϵθ(z, t, s) with the critical difference that it takes additional inputs
s. However, an underlying constraint of such use is the assumption that s is invariant. By contrast,
a fundamental challenge for our method is that the conditions for the DM contain not only invariant
features fh but also equivariant features fx. This requires the distribution pθ(z0:T ) of our DMs to
satisfy the critical invariance:

∀R, pθ(zx, zh, fx, fh) = pθ(Rzx, zh,Rfx, fh), (6)

where zx and zh are the noises. To achieve this, we should ensure that (1) the initial distribution
p(zx,T , zh,T , fx, fh) is invariant, which is already satisfied since zx,T is projected down by subtract-
ing its center of gravity after sampling from standard Gaussian noise. With the fx, fh is obtained
by equivariant Eϕ (Equations 3); (2) the conditional reverse processes via θ, which is expressed as
pθ(zx,t−1, zh,t−1|zx,t, zh,t, fx, fh), are equivariant:

∀R, pθ(zx,t−1, zh,t−1|zx,t, zh,t, fx, fh) = pθ(Rzx,t−1, zh,t−1, |Rzx,t, zh,t,Rfx, fh), (7)
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this can be realized by implementing the denoising network ϵθ with EGNN that satisfy the following
equivariance:

∀R and t, Rzx,t−1 + t, zh,t−1 = ϵθ(Rzx,t + t, zh,t,Rfx + t, fh, t), (8)

To keep translation invariance, all the intermediate states zx,t, zh,t are also required to lie on the
subspace by

∑
i zx,t,i = 0 by moving the center of gravity. Analogous to Equation 17, now we can

train the Physical Prior Steered Diffusion Model (PSDM) by:

LPSDM(G,Gf ) = EG,E(Gf ),ϵ,t

[
∥ϵ− ϵθ(zx,t, zh,t, fx, fh, t)∥2

]
(9)

with w(t) simply set as 1 for all steps t. As the EGNN only receives atomic coordinates and features
zx,t and zh,t, we concatenate fx and fh to the node features zh,t. Specifically, with node features
zh,t ∈ RN×d, a time-step embedding t ∈ RN×1, fx ∈ RN ′×3, and fh ∈ RN ′×k, the EGNN
within the denoising network ϵθ processes coordinates zx,t ∈ RN×3 and concatenated features
zh,t ∈ RN×(d+3+k+1). Since the number of fragments N ′ is less than the number of molecules N ,
zeros are padded to fx and fh.

3.3 TRAINING AND GENERATING OOD SAMPLES

Training. The training loss of the entire framework can be formulated as L = LEAAE + LPSDM. To
make the training loss tractable, we also show that L is theoretically an SE(3)-invariant variational
lower bound of the log-likelihood, and we can have:

Theorem 3.2. Let L := LEAAE + LPSDM. With certain weights w(t), L is an SE(3)-invariant
variational lower bound to the log-likelihood.

Given the above training loss and Theorem 3.2, we can optimize GODD via back-propagation with
reparameterizing trick (Kingma & Welling, 2013). We provide the detailed proof of Theorem 3.2 in
Appendix D, and a formal description of the optimization procedure in Algorithm 1 in Appendix F.
We follow the process of EDM (Hoogeboom et al., 2022) regarding the representation for continuous
features x and categorical features h. For clarity, we provided the details in Appendix B.3.

Generating OOD Molecules. With GODD trained on dataset {GI} and given an OOD
scaffold/ring-structure GfO, we can perform OOD molecule generation (a scaffold OOD genera-
tive process is illustrated in Figure 2). To sample from the model, one first inputs the GfO into the
encoder Eϕ and obtains the latent representation of GfO denoted as physical prior ⟨fx, fh⟩ via reparam-
eterization. With the OOD physical prior as condition, the framework first samples zx,T , zh,T ∼
Nx,h(0, I) and then iteratively samples zx,t−1, zh,t−1 ∼ pθ(zx,t−1, zh,t−1|zx,t, zh,t, fx, fh). Fi-
nally, the output molecule represented as ⟨x,h⟩ is sampled from p(zx,0, zh,0|zx,1, zh,1, fx, fh). The
pseudo-code of the adaptive generation is provided in Algorithm 2 in Appendix F.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets and Tasks. We evaluate over QM9 (Ramakrishnan et al., 2014) and the GEOM-
DRUG (Axelrod & Gómez-Bombarelli, 2022). Specifically, QM9 is a standard dataset that contains
molecular properties and atom coordinates for 130k 3D molecules with up to 9 heavy atoms and
up to 29 atoms, including hydrogens. GEOM-DRUG encompasses around 450,000 molecules, each
with an average of 44 atoms and a maximum of 181. Dataset details and experimental parameters
are presented in Appendices G, H, and E.

Ring-Structure Molecule Generation. In this task, ring-structure variations result in distribution
shifts. We used RDKit (Landrum et al., 2016) to categorize molecules into nine groups based on the
number of rings, ranging from 0 to 8. As the number of rings increases, the quantity of molecules
correspondingly decreases. We partition the QM9 dataset into two subsets based on ring count. The
training data distribution comprises molecules and those with 0 to 3 rings, and we consider the five
target distributions including molecules with 4 to 8 rings, respectively. Figure 6 in the Appendix
presents a schematic diagram illustrating example molecules with 0 to 8 rings. The GEOM-DRUG
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dataset contains molecules with 0 to 14 rings and 22 rings. We include molecules with 0 to 10 rings
as the training set and consider five target distributions as the number of molecules with 11 to 14
and 22 rings are all under 100, representing data-sparse regions.

Scaffold Molecule Generation. In this task, scaffold variations lead to distribution shifts. We
used RDKit (Landrum et al., 2016) to examine the scaffold of each molecule in the QM9 dataset.
Molecules without a scaffold were marked as ‘-’ and included in the total scaffold count. The dataset
was divided based on scaffold frequency. Specifically, the in-distribution dataset contained 100,000
molecules and 1,054 scaffolds, with most scaffolds appearing at least 100 times. Out-of-distribution
I included 15,000 molecules and 2,532 scaffolds, where most scaffolds appeared between 10 to 100
times. Out-of-distribution II consisted of 15,831 molecules and 12,075 scaffolds, with each scaffold
appearing less than 10 times. Our goal is to train a generative model using the in-distribution data
to generate effective molecules that fall into desired new distributions, such as OOD I and II.

Linker Design. The proposed method, leveraging the target fragment to steer the generation towards
data-sparse regions, fundamentally falls into the paradigm of fragment-based drug design (Murray
& Rees, 2009). In addition to the aforementioned tasks, we extend our framework to linker design
and demonstrate a proof-of-concept of GODD on canonical fragment-based design tasks under the
OOD settings. In particular, we observe that the GEOM-LINKER dataset exhibits fragment shifts
due to the ring number of molecules, with molecules having a ring number above eight being ex-
tremely sparse. For comparisons, we split the GEOM-LINKER according to the number of rings
and included molecules with sparse ring numbers as the OOD dataset for testing. Further details
about the GEOM-LINKER dataset and related works are provided in Appendices I and L.

Baselines. To comprehensively compare performance, we include unconditional, conditional, and
OOD generative frameworks. First, we employ four state-of-the-art 3D unconditional molecule
diffusion models: EDM (Hoogeboom et al., 2022), GeoLDM (Xu et al., 2023), EquiFM (Song
et al., 2023a), and GeoBFN (Song et al., 2023b), to validate the efficacy of our proposed GODD in
OOD generation. Second, we apply EEGSDE (Bao et al., 2023) and modify EDM and GeoLDM
for conditional generation. As these methods can only control the generation process with scalar
features, we use the number of rings as a scalar feature in ring-structure molecule generation. We
set ring counts as the condition to control the generation process of the baselines, denoted as C-EDM,
C-GeoLDM, and EEGSDE, to verify GODD’s effectiveness in the OOD ring-structure generation
task. Lastly, we include OOD generative frameworks, including MOOD (Lee et al., 2023) and
CGD (Klarner et al., 2024), for ring-structure molecule generation to compare the performance of
OOD generation. For comparative purposes, we also train unconditional models on the entire dataset
(denoted with †) and highlight models trained exclusively on in-distribution data with ‡.
For linker design, we will use DiffLinker (Igashov et al., 2024) and LinkerNet (Guan et al., 2024) as
the baselines for comparisons. DiffLinker developed a diffusion model capable of connecting mul-
tiple molecular fragments, while LinkerNet further advanced this by introducing diffusion models
on Riemann manifolds for fragment linking.

Metrics. Our objective is to generate effective 3D molecules in data-sparse regions. A generated
sample is effective only when it falls into the target distribution while it is valid, unique, and novel
simultaneously. Therefore, our evaluation metrics can be defined as follows:

1. Proportion (P): Given an OOD scaffold/ring set {GfO}, proportion describes the percentage
of molecules that contain the desired scaffold/ring-structure in {GfO} among generated valid sam-
ples; 2. Coverage (C): Coverage describes the percentage of scaffold set of the generated samples
(denoted as {GfG}) in the ODD scaffold set {GfO}, which is expressed as C = |{GfG}|/|{G

f
O}|; 3.

Target atom stability (AS): The ratio of atoms that has the correct valency with the desired
scaffold/ring-structure among all generated molecules; 4. Target molecule stability (MS): The
ratio of generated molecules contains the desired scaffold/ring-structure, and all atoms are stable.
GEOM-DRUG dataset has nearly 0% molecule-level stability, so this metric is generally ignored on
GEOM-DRUG (Hoogeboom et al., 2022); 5. Target validity (V): The percentage of valid molecules
among all the desired molecules, which is measured by RDkit (Landrum et al., 2016) and widely
used for calculating validity (Hoogeboom et al., 2022; Xu et al., 2023)); 6. Target novelty (N):
The percentage of novel molecules among all the desired valid molecules, the novel molecule is
different from training samples; 7. Success rate (S): The ratio of generated valid, unique, and novel
molecules that contain the desired scaffold/ring-structure.
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Table 2: Results of molecule proportion in terms of ring-number (P), atom stability (AS), molecule
stability (MS), validity (V), novelty (N), and success rate (S). The best results are highlighted in
bold. QM9 contains 36 eight-ring molecules, and the proportion is nearly 0.

Metrics ↑ P (%) in Distribution P (%) in OOD Generation AS MS V N S
No. of Ring 0 1 2 3 4 5 6 7 8 Averaged metrics (%)

QM9 10.2 39.3 27.6 15.1 4.4 2.7 0.6 0.2 0.0 99.0 95.2 97.7 - -

EDM† 10.5 39.8 28.0 14.5 4.0 2.9 0.2 0.1 0.0 11.0 9.6 10.4 6.8 6.3
GeoLDM† 12.0 38.6 27.0 15.3 4.6 2.2 0.2 0.1 0.0 11.0 9.9 10.4 6.4 5.9

EDM‡ 12.1 44.1 29.8 11.8 1.7 0.5 0.0 0.0 0.0 11.0 9.7 10.4 6.8 6.3
GeoLDM‡ 2.8 41.5 32.1 15.7 4.7 2.7 0.3 0.1 0.0 10.9 9.1 10.4 6.7 6.2
EquiFM‡ 3.5 41.9 32.6 15.0 4.6 2.3 0.0 0.0 0.0 11.0 9.8 10.5 6.0 5.6
GeoBFN‡ 3.6 41.7 32.5 15.5 4.6 2.1 0.0 0.0 0.0 11.0 10.1 10.6 7.4 7.0

C-EDM‡ 98.9 94.2 80.8 64.4 12.6 26.8 0.3 0.1 0.0 41.3 33.9 38.0 27.3 24.1
C-GeoLDM‡ 97.1 89.4 74.2 52.4 22.3 22.7 0.9 0.2 0.0 39.1 31.5 35.7 28.3 25.0

EEGSDE‡ 98.4 92.2 77.6 58.2 14.1 17.6 0.3 0.0 0.0 39.1 31.1 35.7 27.2 24.2

MOOD‡ 80.7 87.1 86.1 73.3 34.1 32.3 10.3 0.2 0.0 44.3 39.0 42.1 25.5 21.0
CGD‡ 82.3 84.8 86.2 83.6 34.4 22.4 10.3 10.1 0.0 45.5 40.0 43.2 28.4 26.2

GODD‡ 99.9 99.8 99.1 97.6 92.5 89.7 78.7 88.2 82.1 83.1 54.0 77.9 70.3 40.5

†: Models are trained over entire QM9;
‡: Models are trained over ring-split QM9 with ring-number from 0-3.
C-: C-EDM and C-GeoLDM are trained with conditioning on ring counts.

4.2 RESULTS AND ANALYSIS

Table 3: Results of molecule proportion
in terms of ring number (P), atom stability
(AS), molecule validity (V), novelty (N), and
success rate (S). The number of molecules
with above 11 rings in GEOM-DRUG is
lower than 100.

Averaged Metric (%) ↑
Method P AS V N S

GEOM-DRUG 0.0 86.5 99.9 - -
EDM† 0.0 0.0 0.0 0.0 0.0

GeoLDM† 0.0 0.0 0.0 0.0 0.0
EquiFM† 0.0 0.0 0.0 0.0 0.0
GeoBFN† 0.0 0.0 0.0 0.0 0.0
GODD‡ 13.8 11.4 11.0 13.8 10.9

† Models are trained on complete GEOM-DRUG.
‡ Models are trained on GEOM-DRUG with ring numbers

from 0-10.

Ring-Structure Molecule Generation. In this task,
all models were trained with the same training data
that contains molecules with ring counts ranging
from 0 to 3. Subsequently, their OOD generative
performances were tested for generating molecules
with 4 to 8 rings, respectively. We present the re-
sults on 10,000 generated molecules for each ring-
count distribution in Table 2. For clarity, the gen-
erated target molecule validity, novelty, and success
rate are calculated by averaging the corresponding
values from 4 training distributions and 5 target dis-
tributions. Full results are presented in Appendix J.

Table 2 demonstrates that those uncontrollable meth-
ods baselines (i.e., EDM, GeoLDM, EquiFM, and
GeoBFN) can barely generate molecules with 4 to
8 rings — with 7.0% success rate at most. Manip-
ulating the generation process with ring counts can
slightly improve OOD generation performance with up to 25% success rates. OOD generative mod-
els show slight improvement but are still insignificant. In contrast, GODD can achieve a 40.5%
success rate. Moreover, we observe that no baselines can generate 8-ring molecules, including
those controllable generation methods (i.e., C-GeoLDM, C-EDM, and EEGSDE) and OOD meth-
ods (MOOD and CGD), reflecting the difficulty of generating those complex and sparse molecules
in the original QM9 (only 36 8-ring molecules). Notably, GODD can generate 82.1% portion of
8-ring molecules even though the training data does not contain any of those samples, showing the
significance of using physical prior representations for steering the denoising process of the diffu-
sion models. Specifically, among the generated 10,000 molecules using GODD, 2,388 valid, unique,
and novel 8-ring molecules were obtained. These results verify that GODD can perform OOD 3D
molecule generation with the ring-structure shifts in data-sparse distributions.

Table 3 presented the statistical results of various methods for generating rare ring number molecules
(ranging from 11 to 14 and 22) on the large-scale dataset GEOM-DRUG, in which the molecules
with large ring numbers are even more sparse. Notably, EDM, GeoLDM, EquiFM, and GeoBFN,
which are even trained on the complete dataset, cannot generate molecules with ring numbers ex-
ceeding 10, thus failing to produce any desired molecules. In contrast, GODD can generate an
average of 13.8% of the OOD molecules by solely training on molecules with ring numbers from
0-10. Specifically, for molecules with 22 rings, of which there are only two in the complete dataset,
GODD produces 1,374 valid and novel molecules out of 10,000 generated samples, whereas none
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Table 4: Results of proportion (P), scaffold coverage (C), molecule validity (V), molecule novelty
(N), and molecule success rate (S). The best results are highlighted in bold.

Domains In distribution (%) OOD I (%) OOD II (%)

Metrics↑ P C V N S P C V N S P C V N S

Data 76.4 100.0 97.7 - - 11.5 100.0 97.7 - - 12.1 100.0 97.7 - -

EDM† 79.9 36.3 74.8 48.8 45.0 10.9 28.9 10.2 6.7 6.1 9.2 34.9 8.6 5.6 5.2
GeoLDM† 80.4 35.2 75.6 46.7 43.1 10.7 31.2 10.1 6.2 5.8 8.8 33.5 8.3 5.1 4.7
EquiFM† 80.4 36.8 76.1 43.2 40.9 7.8 35.1 7.3 4.2 3.9 11.8 29.2 0.0 0.0 0.0
GeoBFN† 81.3 35.2 77.5 54.0 51.4 7.7 34.3 7.4 5.1 4.9 11.0 32.0 0.0 0.0 0.0

EDM‡ 91.4 56.5 83.2 58.2 52.0 5.9 26.5 5.3 3.7 3.3 2.7 17.0 2.4 1.7 1.5
GeoLDM‡ 90.6 54.3 81.7 57.8 51.0 5.9 26.7 5.3 3.8 3.3 3.5 19.0 3.2 2.3 2.0
EquiFM‡ 91.0 56.3 86.2 48.9 46.3 5.4 27.8 5.1 2.9 2.7 3.6 17.4 0.0 0.0 0.0
GeoBFN‡ 91.1 54.4 86.8 60.5 57.7 6.0 27.3 5.7 4.0 3.8 2.9 19.9 2.7 1.9 1.8

GODD‡ 99.2 92.5 90.7 67.6 52.4 97.0 97.1 80.0 84.5 68.9 95.5 85.7 83.3 82.0 65.8
† Models are trained over the entire QM9 dataset;
‡ Models are trained only with in-distribution data, where each scaffold appears at least 100 times.

Table 5: Results of atom stability (AS) and molecule
stability (MS). The best results are highlighted in
bold.

Domains In-dist (%) OOD I (%) OOD II (%)
Metrics↑ AS MS AS MS AS MS

Data 99.0 95.2 99.0 95.2 99.0 95.2
EDM† 78.9 65.5 10.8 8.9 9.1 7.5

GeoLDM† 79.5 71.9 10.6 9.6 8.7 7.9
EquiFM† 79.5 71.0 6.3 6.0 0.0 0.0
GeoBFN† 80.5 73.9 7.3 7.0 0.0 0.0

EDM‡ 90.4 73.3 5.8 4.7 2.6 2.1
GeoLDM‡ 89.1 75.6 5.8 4.9 3.5 3.0
EquiFM‡ 90.0 80.4 5.3 4.8 3.6 3.2
GeoBFN‡ 90.3 82.8 5.9 5.5 2.9 2.6
GODD‡ 96.1 71.3 89.5 45.6 89.0 35.1

Proportion Scaffold Coverage

†
†

†
†
‡

‡

‡

Figure 3: Visualization of Proportion and Cov-
erage. Compared methods can only mimic the
original distribution and are incapable of gener-
ating OOD molecules. Besides, only molecules
generated by the proposed method cover OOD
scaffolds.

of the compared methods can generate even a single molecule with 22 rings. The proposed method
achieves a remarkable improvement in the success rate by 13.7% in generating such molecules, even
without exposure to these two molecules.

Scaffold Molecule Generation. In the task of OOD scaffold molecule generation, the scaffolds are
too sparse to train an effective classifier for guidance-based generative models (15,831 molecules
contain 12,075 different scaffolds); we then train unconditional methods both on the complete
dataset (†) and in-distribution data (‡) for a comprehensive comparison. In particular, our GODD
is trained exclusively over the in-distribution dataset. After training, each model generates 15,000
molecules for the in-distribution, OOD I, and OOD II. The quantitative results using various metrics
are presented in Table 4, Table 5, and Figure 3. We observe that with EDM, GeoLDM, EquiFM,
and GeoBFN, the scaffold proportion of the generated molecules indeed mirrors that of the train-
ing samples (see proportion and coverage visualization in Figure 3). However, they all struggle to
generate molecules with scaffolds falling into the desired distribution I or II; they can only achieve
3.8% success rates at most (see Table 4). In contrast, our proposed GODD, trained solely on the
in-distribution data, can generate OOD molecules containing the target scaffolds given the corre-
sponding fragments, achieving at least 95.5% proportion in both new distributions.

Table 6: Results on the quantitative estimate of
drug-likeness (QED), synthetic accessibility (SA),
validity (v), and success rate (S) on the linker de-
sign task. The best results are highlighted in bold.

GEOM-LINKER QED ↑ SA ↓ V (%) ↑ S (%) ↑
DiffLinker 0.56 3.92 42.17 14.45
LinkerNet 0.56 3.89 48.5 18.9

GODD 0.57 3.63 65.2 22.61

Notably, for OOD II, comprising over 12,000
different rare scaffolds, only GODD can
achieve 85.7% coverage. Nevertheless, all
baselines can only achieve 35.1% coverage at
most, indicating the significance of our EAAE.
It is worth noting that GODD does not require
any OOD molecules; instead, it encodes the
fragment as the physical prior for OOD gener-
ation, overcoming the data scarcity challenge.
GODD improves the molecule novelty and suc-
cess rate by up to 80.1% regarding novelty and 64.0% in terms of success rate as compared to the
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baselines. The atom stability and molecule stability presented in Table 5 also demonstrates that the
designed GODD performs better on generating chemically stable molecules with desired scaffolds.

Evaluation on the Task of Linker Design. In addition to validity and uniqueness, we include
metrics from previous works, such as the quantitative estimate of drug-likeness (QED) and synthetic
accessibility (SA). The experimental results indicate that existing linker design methods fall short
in linking OOD fragments, achieving a validity below 50%. In contrast, we can achieve a validity
of 65.2%. These results demonstrate that GODD shows promising performance in fragment linking
within the OOD context.

Table 7: Results of proportion (P), scaffold coverage (C),
molecule validity (V), molecule success rate (S), atom stability
(AS), and molecule stability (MS). The best results are high-
lighted in bold.

Domains In-dist (%) OOD I (%) OOD II (%)
Metrics↑ P C V P C V P C V
GODD* 99.2 98.5 85.1 95.1 96.9 58.3 94.3 84.0 35.0
GODD‡ 99.2 92.5 90.7 97.0 97.1 80.0 95.5 85.7 83.3
Metrics↑ AS MS S AS MS S AS MS S
GODD* 89.2 68.4 52.1 82.0 12.8 41.8 75.1 10.4 31.0
GODD‡ 96.1 71.3 52.4 89.5 45.6 68.9 89.0 35.1 65.8

Ablation Study for Evaluat-
ing the Significance of the
Asymmetric Autoencoder. We
present the ablation study in Ta-
ble 7 featuring a variation of
the proposed method, GODD*,
which utilizes a symmetric au-
toencoder. Specifically, the au-
toencoder of GODD* receives
and reconstructs only the frag-
ment. The results indicate that
GODD* demonstrates promis-
ing in-distribution generation
and achieves better performance in scaffold coverage, aligning with the performance of traditional
autoencoders in the in-distribution tasks. However, GODD* performs worse than GODD in OOD
generation. Although GODD* achieves similar proportions and coverage by receiving OOD frag-
ments, its generation quality is worse, particularly regarding stability and validity. This suggests
that even with fragments, GODD* is still hard to generalize to generate valid molecules in OOD
scenarios. These observations underscore the effectiveness of using asymmetric autoencoder.

Limitations. This paper addresses the problem of OOD generation in the context of structural
shifts. However, in some scenarios, OOD structures may not be provided. We plan to investi-
gate this issue in future work by developing methods to identify structural variations when OOD
structures are unavailable. Additionally, most generative models, including ours, adopt the EGNN
modules to capture the equivariance of molecules (Hoogeboom et al., 2022; Xu et al., 2023; Song
et al., 2023a;b). The model’s memory overhead escalates exponentially with the size of the in-
put molecules, posing a significant constraint, especially for generating large molecules. Given a
molecule G = ⟨x ∈ Rn×3,h ∈ Rn×f ⟩. Suppose the total number of layers of EGNNs used is l and
the hidden feature for EGNN is h, then the space complexity of our model isO(nnhl). For example,
in the GEOM-DRUG dataset, if molecules of 180 atoms are processed, all methods EGNN-based
algorithms require around 3.5GB of memory, which results in huge overhead for experiments.

5 CONCLUSION

This paper investigated the problem of OOD molecule generation in the context of fragment shifts
and proposed an asymmetric autoencoder to represent fragments as physical priors to steer the gen-
eration toward data-sparse regions. Our quantitative experiments demonstrated that the proposed
method surpasses existing techniques, including unconditional, conditional, and OOD approaches,
in generating valid, unique, and novel OOD molecules with desired fragments in data-sparse regions.
Extensive quantitative results in successful OOD generation validated the ability of asymmetric au-
toencoder to encode unseen fragments and the potential of GODD in steering generation through
the encoded physical priors. Furthermore, the linker design experiment confirmed the proposed
method’s applicability to fragment-based drug design. Additionally, our framework is generative
model-agnostic; it can be seamlessly integrated into other generative models, such as latent diffu-
sion (Xu et al., 2023) or flow-based models (Song et al., 2023a).
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APPENDIX

A DIFFUSION MODELS

Given a data point x0 ∼ q(x0) and a variance schedule β1, . . . , βT that controls the amount of noise
added at each timestep t, the diffusion process or forward process gradually add Gaussian noise to
the data point x:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (10)

where β1:T are chosen such that data point x will approximately converge to standard Gaussian, i.e.,
q(xT ) ≈ N (0, I). Generally, the diffusion process q has no trainable parameters. The denoising
process or reverse process aims at learning a parameterized generative process, which incremen-
tally denoise the noisy variables xT :1 to approximate restore the data point x0 in the original data
distribution:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), (11)

where the initial distribution p(xt) is sampled from standard Gaussian noiseN (0, I). The means µθ

typically are neural networks such as U-Nets for images or Transformers for text.

The forward process is q(x1:T |x0) is an approximate posterior to the Markov chain, and the reverse
process pθ(x0:T ) is optimized by a variational lower bound on the negative log-likelihood of x0 by:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
(12)

=Eq

− log p(xT )−
T∑

t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

 , (13)

which is Lvlb. To efficiently train the diffusion models, further improvements come to term Lvlb by
variance reduction, and thereby Eq. (12) is rewritten as:

Lvlb = Eq[LT +

T∑
t=2

Lt + L0] (14)

where LT = log q(xT |x0)
pθ(xT ) , which models the distance between a standard normal distribution and

the final latent variable q(xT |x0), since the approximate posterior q has no learnable parameters, so
LT is a constant during training and can be ignored. L0 = − log pθ(x0|x1) models the likelihood
of the data given x0, which is close to zero and ignored as well if β0 ≈ 0 and x0 is discrete.

Lt in Eq. (14) is the loss for the reverse process and is given by:

Lt =

T∑
t≥2

log
q(xt−1|x0,xt)

pθ(xt−1|xt)
. (15)

While in this formulation the neural network directly predicts x̂0, (Ho et al., 2020) found that opti-
mization is easier when predicting the Gaussian noise instead. Intuitively, the network is trying to
predict which part of the observation xt is noise originating from the diffusion process, and which
part corresponds to the underlying data point x0. Then sampling xt−1 ∼ pθ(xt−1|xt) is to compute

xt−1 =
1
√
αt

(
xt −

√
βt√

1− ᾱt
ϵθ(xt, t)

)
+ σtz, (16)

where αt := 1− βt, ᾱt :=
∏t

s=1 αs, and z ∼ N (0, I). And thereby LDM := Lt is simplified to:

LDM = Ex0,ϵ,t

[
w(t)∥ϵ− ϵθ(xt, t)∥2

]
(17)

where w(t) = βt

2σ2
tαt(1−ᾱt)

is the reweighting term and could be simply set as 1 with promising

sampling quality, and xt =
√
ᾱtx0 +

√
1− ᾱtϵ.
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B MODEL ARCHITECTURE DETAILS

B.1 EQUIVARAINT MASKED AUTOENCODER

In this work, EAAE considers visible molecular structural geometries as point clouds, without spec-
ifying the connecting bonds. Therefore, in practice, we take the point clouds as fully connected
graph G and model the interactions between all atoms vi ∈ V . Each node vi is embedded with coor-
dinates xi ∈ R3 and atomic features hi ∈ Rd. Then, EAAE are composed of multiple Equivariant
Convolutional Layers, and each single layer is expressed as (Satorras et al., 2021):

d2ij = ∥xl
i − xl

j∥2,
mi,j = ϕe(h

l
i,h

l
j , d

2
ij , aij),

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

dij + 1
ϕx(mi,j)

hl+1
i = ϕh(h

l
i,

∑
j∈N (i)

ϕi(mij)mij)

(18)

where l denotes the layer index, ϕi(mij) reweights messages passed from different edges in an
attention weights manner, dij + 1 is normalizing the relative directions xl

i − xl
j following previous

methods (Satorras et al., 2021; Hoogeboom et al., 2022). All learnable functions, i.e., ϕe, ϕx, ϕh,
and, ϕi, are parameterized by Multi Layer Perceptrons (MLPs). Then a complete EGNN model
can be realized by stacking L layers such that and satisfies the required equivariant constraint in
Equations 3, 4, and 6.

B.2 EQUIVARAINT PHYSICAL PRIOR STEERED DENOISING NEURAL NETWORKS

The denoising neural network is implemented by multiple equivariant convolutional layers, and the
difference in the Equation 18 is the hidden features h. Due to the diffusion model is conditioned by
fx, fh from encoder E , the hidden features for our denoising neural network is expressed as h̄ ←
[h, fx, fh], where h are original features of geometric graph and [a, b] is concatenation operation.

B.3 MULTI-MODAL FEATURE REPRESENTATION OF MOLECULES

Multimodal features of molecules raise concerns for the term L0 = − log pθ(x0|x1) in Equation 14.
For categorical features such as the atom types, this model would however introduce an undesired
bias (Hoogeboom et al., 2022). For the intermediate variable xt, we subdivide it into zx,t and zh,t
in the proposed DM, which are coordinate variables and atomic attribute variables, respectively.

Coordinate Features. First we set σ2
t I ← Σθ(xt, t) = βt and add an additional correction term

containing the estimated noise ϵx,0 from denoising neural network ϵ. Then continuous positions zx
in p(zx,0|zx,1) is expressed as:

p(zx,0|zx,1) = N (zx,0|zx,1/α1 − σ1/α1ϵx,0, σ
2
1/α

2
1I) (19)

Atom Type Features. For categorical features such as the atom type, the aforementioned integer
representation is unnatural and introduces bias. Instead of using integers for these features, we
operate directly on a one-hot representation. Suppose h or zh,0 is an array whose values represent
atom types in {c1, . . . , cd}. Then h is encoded with a one-hot function h ← hone-hot such that
hone-hot
i,j ← 1hi=ci . and diffusion process over zh,t at timestep t and sampling at final timestep are

given as:

q(zh,t|zh,0) = N (zh,t|αth
one-hot, σ2

t I) (20)

p(zh,0|zh,1) = C(zh,0|p), p ∝
∫ 1+ 1

2

1− 1
2

N (u;µθ(zh,1, 1), σ
2
1)du (21)

where p is normalized to sum to one and C is a categorical distribution.
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Atom Charge. Atom charge is the ordinal type of physical quantity, and its sampling process at the
final timestep can be formulated by standard practice (Ho et al., 2020):

p(zh,0|zh,1) =
∫ h+ 1

2

h− 1
2

N (u;µθ(zh,1, 1), σ
2
1)du (22)

Feature Scaling. To normalize the features and make them easier to process for the neural network,
we add weights to different modalities. The relative scaling has a deeper impact on the model:
when the features h are defined on a smaller scale than the coordinates x, the denoising process
tends to first determine rough positions and decide on the atom types only afterward. Empirical
knowledge shows that the weights for coordinate, atom type, and atom charge are 1, 0.25, and 0.1,
respectively (Hoogeboom et al., 2022).
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C LOSS OF EMAE IS SE(3)-INVARIANT

Equivariance. Molecules, typically existing within a three-dimensional physical space, are sub-
ject to geometric symmetries, including translations, rotations, and potential reflections. These are
collectively referred to as the Euclidean group in 3 dimensions, denoted as E(3) (Celeghini et al.,
1991). A function F is said to be equivariant to the action of a group G if Tg ◦ F (x) = F ◦ Sg(x)
for all g ∈ G, where Sg , Tg are linear representations related to the group element g (Serre et al.,
1977). We consider the special Euclidean group SE(3) for geometric graph generation involv-
ing translations and rotations. Moreover, the transformations Sg or Tg can be represented by a
translation t and an orthogonal matrix rotation R. For a molecule G = ⟨x,h⟩, the node features
h are SE(3)-invariant while the coordinates x are SE(3)-equivariant, which can be expressed as
Rx+ t = (Rx1 + t, . . . ,RxN + t).

Proof. LEAAE is SE(3)-invariance

Recall the loss function:

LEAAE = Eqϕ(fx,fh|xf ,hf )pϑ(x,h|fx, fh)− KL[qϕ(fx, fh|xf ,hf )||
N∏
i

N (fx,i, fh,i|0, I)] (23)

Our expected outcome is ∀R, LEAAE(x,h,x
f ,hf ) = LEAAE(Rx,h,Rxf ,hf ). We have:

LEAAE(Rx,h,Rxf ,hf )

=Eqϕ(fx,fh|Rxf ,hf )pϑ(Rx,h|fx, fh)− KL[qϕ(fx, fh|Rxf ,hf )||
N∏
i

N (fx,i, fh,i|0, I)]

=

∫
G
qϕ(fx, fh|Rxf ,hf ) log pϑ(Rx,h|fx, fh) +

∫
G
log

qϕ(fx, fh|Rxf ,hf )∏N
i N (fx,i, fh,i|0, I)

=

∫
G
qϕ(RR−1fx, fh|Rxf ,hf ) log pϑ(Rx,h|RR−1fx, fh)

+

∫
G
log

qϕ(RR−1fx, fh|Rxf ,hf )∏N
i N (fx,i, fh,i|0, I)

RR−1 = I

=

∫
G
qϕ(R

−1fx, fh|xf ,hf ) log pϑ(x,h|R−1fx, fh)

+

∫
G
log

qϕ(R
−1fx, fh|xf ,hf )∏N

i N (fx,i, fh,i|0, I)
SE(3) of x, fx, & xf

=

∫
G
qϕ(k, fh|xf ,hf ) log pϑ(x,h|k, fh) · |R|

+

∫
G
log

qϕ(k, fh|xf ,hf )∏N
i N (fx,i, fh,i|0, I)

Let k = R−1fx

=Eqϕ(k,fh|Rxf ,hf )pϑ(x,h|k, fh)

− KL[qϕ(k, fh|xf ,hf )||
N∏
i

N (fx,i, fh,i|0, I)] |R| = 1

=LEAAE(x
f ,hf )

(24)

Given the fragment Gf , we subtract the center of gravity from xf ∈ Gf , and thereby ensure that
E receives isotropic geometric graph, and all together guarantee that the loss of EAAE is SE(3)-
invariant.
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D LOSS OF GODD IS AN SE(3)-INVARIANT VARIATIONAL LOWER BOUND
TO THE LOG-LIKELIHOOD

First, we present the rigorous statement of the Theorem 3.2 here:

Theorem D.1. Given predefined and valid {αi}Ti=0, {βi}Ti=0, and {γi}Ti=0 Let w(t) satisfies:

1. ∀t ∈ [1, . . . , T ], w(t) =
β2
t

2γ2
t (1− βt)(1− α2

t )
(25)

2. w(0) = −1 (26)

Then given the geometric datapoint G = ⟨x,h⟩ ∈ RN×(3+d) and its subset Gf ⟨xf ,hf ⟩ ∈ RF×(3+d)

the loss L of the proposed method is expressed as:

L := LEAAE + LPSDM (27)

which satisfies:

1. ∀R and t, L(x,h,xf ,hf ) = L(Rx+ t,h,Rxf + t,hf ) (28)

2. L(x,h,xf ,hf ) ≥ −Ep⟨x,h⟩∈{G},[fx,fh]=Eϕ(Gf )[log pθ(zx, zh|fx, fh)] (29)

And we have log pθ(x0,h0) is the marginal distribution of ⟨x,h⟩ under GODD.

The theorem proposed herein posits two distinct assertions. Firstly, Equation 28 illustrates that the
loss function L is SE(3)-invariant, meaning it remains unchanged under any rotational or transla-
tional transformations. Secondly, Equation 29 suggests that L acts as a variational lower bound for
the log-likelihood. We provide comprehensive proofs for these assertions separately, commencing
with Equation 29.

Proof. L is a variational lower bound of the log-likelihood

Recall the loss function:

L(x,h,xf ,hf ) =LEAAE + LPSDM (30)

=Eqϕ(fx,fh|xf ,hf )pϑ(x,h|fx, fh)− KL[qϕ(fx, fh|xf ,hf )||
N∏
i

N (fx,i, fh,i|0, I)]

(31)

+ EG,Eϕ(Gf ),ϵ,t

[
∥ϵ− ϵθ(xt,ht, fx, fh, t)∥2

]
(32)

LEAAE is a standard variational autoencoder and has been proven to be a variational lower bound of
the log-likelihood (Kingma & Welling, 2014). For simplicity, we denote zx,t, zh,t as zt, and fx, fh
as f , then we expect LPSDM has:

log pθ(z|f) ≥ KL[q(z1:T |z0)∥pθ(z|f)] (33)
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log pθ(z|f) ≥Eq(z1:T |z0)

[
log

pθ(z0:T |f)
q(z1:T |z0)

]
=Eq(z1:T |z0)

[
log

p(zT )pθ(z0|z1, f)
∏T

t=2 pθ(zt−1|zt, f)
q(z1|z0)

∏T
t=2 q(zt|zt−1)

]

=Eq(z1:T |z0)

[
log

p(zT )pθ(z0|z1, f)
q(z1|z0)

+ log

T∏
t=2

pθ(zt−1|zt, f)
q(zt|zt−1)

]

=Eq(z1:T |z0)

log p(zT )pθ(z0|z1, f)
q(z1|z0)

+ log

T∏
t=2

pθ(zt−1|zt, f)
q(zt−1|zt,z0)q(zt|z0)

q(zt−1|z0)


=Eq(z1:T |z0)

[
log

p(zT )pθ(z0|z1, f)
q(zT |z0)

+

T∑
t=2

log
pθ(zt−1|zt, f)
q(zt−1|zt, z0)

]

=Eq(z1|z0)[pθ(z0|z1, f)] + Eq(zT |z0)

[
log

p(zT )

q(zT |z0)

]
+

T∑
t=2

Eq(zt,zt−1|z0)

[
log

pθ(zt−1|zt, f)
q(zt−1|zt, z0)

]
=Eq(z1|z0)[pθ(z0|z1, f)]− KL[q(zT |z0)∥p(zT )]

−
T∑

t=2

Eq(zt|z0)[KL[q(zt−1|zt, z0)∥pθ(zt−1|zt, f)]]

(34)

where we denote KL[q(zt−1|zt, z0)∥pθ(zt−1|zt, f)] as LPSDM,t−1, then we have:

LPSDM,t−1 = Eϵ∼N (0,I)

[
β2
t

2γ2
t (1− βt)(1− α2

t )
∥ϵ− ϵθ(zt, f , t)∥22

]
(35)

which gives us the weights of w(t) for t = 1, . . . , T .

For term Eq(z1|z0)[pθ(z0|z1, f)], we denote as LPSDM,0. With sampling at the final timestep for
different modality features and a normalization constant Z, we have:

LPSDM,0 = Eϵ∼N (0,I)

[
logZ−1 − 1

2
∥ϵ− ϵθ(z, f , 1)∥2

]
(36)

Since zT ∼ N (0, I), we have:

LPSDM,T = KL[q(zT |z0)∥p(zT )] = 0 (37)

Therefore, we have:

Ep⟨x,h⟩∈{G},[fx,fh]=Eϕ(Gf )[log pθ(z|f)] ≥ −
T∑

t=2

LPSDM,t−1 − LPSDM,0 = −LPSDM (38)

We then prove Equation 28:

Proof. L is SE(3)-invariance

Our expected outcome is ∀R, L(x,h,xf ,hf ) = L(Rx,h,Rxf ,hf ), and ∀R,
LEAAE(x,h,x

f ,hf ) = LEAAE(Rx,h,Rxf ,hf ) is ensured in Proof. C. For LPSDM, we
expect ∀R,LPSDM(Rzx,0, zh,0,Rf) = LPSDM(zx,0, zh,0, f) we have:

LPSDM(Rzx,0, zh,0)

=EG,Eϕ

[
T∑

t=2

Eq(zt|Rz0)[KL[q(zt−1|zt,Rz0)∥pθ(zt−1|zt,Rf)]]− Eq(z1|Rz0)[pθ(Rz0|z1,Rf)]

]
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=

∫
G

[
T∑

t=2

log
q(zt−1|q(zt,Rz0)

pθ(zt−1|zt,Rf)
− log pθ(Rz0|z1,Rf)

]

=

∫
G

[
T∑

t=2

log
q(RR−1zt−1|q(RR−1zt,Rz0)

RR−1pθ(zt−1|RR−1zt,Rf)
− log pθ(Rz0|RR−1z1,Rf)

]
RR−1 = I

=

∫
G

[
T∑

t=2

log
q(R−1zt−1|q(R−1zt, z0)

R−1pθ(zt−1|R−1zt, f)
− log pθ(z0|R−1z1, f)

]
SE(3) of fx & zt

=EG,Eϕ

[
T∑

t=2

log
q(jt−1|q(jt, z0)

R−1pθ(zt−1|jt, f)
− log pθ(z0|j1, f)

]
Let jt = R−1zt

=LPSDM(zx,0, zh,0, f)
(39)

E TRAINING DETAILS

Parameters

1. Optimizer: Adam (Kingma & Ba, 2015) optimizer is used with a constant learning rate of
10−4 as our default training configuration.

2. Batch size: 64.
3. EGNN in PSDM: 9 layers and 256 hidden features for QM9, 4 layers and 256 hidden

features for GEOM-DRUG.
4. EGNN in EAAE: 1 layer and 256 hidden features for the encoder for QM9 and GEOM-

DRUG, 9 layers and 4 layers with 256 hidden features for the decoder for QM9 and GEOM-
DRUG, respectively.

5. Latent dimension of fx, fh: latent dimension is 3 and 1 for fx and fh, respectively.
6. Epoch: 3000 for QM9 and 10 for GEOM-DRUG.

Training

1. GPU: NVIDIA GeForce RTX 3090
2. CPU: Intel(R) Xeon(R) Platinum 8338C CPU
3. Memory: 512 GB
4. Time: Around 7 days for QM9 and 20 days for GEOM-DRUG.

Specific Parameters 1. On QM9, we train PSDM with 9 layers and 256 hidden features with a
batch size 64; 2. On GEOM-DRUG, we train PSDM with 4 layers and 256 hidden features, with
batch size 64;

F ALGORITHMS

This section contains two main algorithms of the proposed GODD. Algorithm 1 presents the pseudo-
code for training GODD on the in distributional training data set {GI} and corresponding fragment
set {GfI }. Algorithm 2 presents the process of OOD molecule generation using the ODD scaf-
fold/ring GfO.

G QM9 DATASET

QM9 (Ramakrishnan et al., 2014) is a comprehensive dataset that provides geometric, energetic,
electronic, and thermodynamic properties for a subset of the GDB-17 database (Ruddigkeit et al.,
2012), comprising 134 thousand stable organic molecules with up to nine heavy atoms.
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Algorithm 1 Training GODD

1: Input: in-distribution geometric data point GI = ⟨x,h⟩, corresponding fragment GfI , asymmet-
ric encoder Eϕ and decoder Dϑ, denoising network ϵθ;

2: EAAE:
3: µx, µh ← Eϕ(xf ,hf ) // Encode
4: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Sample Noise for EAAE
5: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity
6: fx, fh ← µ+ ⟨ϵx, ϵh⟩ ⊙ σ0 // Reparameterization
7: PSDM:
8: t ∼ U(0, T ) // Sample Timestep
9: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Sample Noise for PSDM

10: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity
11: zx,t, zh,t ← αt[x,h] + σtϵ // Diffuse
12: x̂, ĥ← Dϑ(fx, fh) // Decode
13: Optimization
14: LEAAE ← L([x̂, ĥ], [x,h]) + KL // L for EAAE
15: LPSDM ← ∥ϵ− ϵθ(zx,t, zh,t, t, fx, fh)∥2 // L for PSDM
16: LGODD ← LEAAE + LPSDM // Total Loss
17: ϕ, ϑ, θ ← optimizer(LGODD, ϕ, ϑ, θ) // Optimize
18: return ϕ, θ

Algorithm 2 Adaptive Sampling of GODD

1: Input: OOD fragment GfO = ⟨xf
O,h

f
O⟩, encoder Eϕ, denoising network ϵθ;

2: µx, µh ← Eϕ(xf
O,h

f
O) // Encode

3: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Sample Noise for EAAE
4: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity
5: fx, fh ← µ+ ⟨ϵx, ϵh⟩ ⊙ σ0 // Target Condition
6: ⟨zx,T , zh,T ⟩ ∼ N (0, I) // Sample Noise for Generation
7: for t in T, T − 1, . . . , 1 do
8: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Denoising
9: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity

10: zx,t−1, zh,t−1 ← 1√
1−βt

(⟨zx,t, zh,t⟩ − βt√
1−α2

t

ϵθ(zx,t, zh,t, t, fx, fh)) + ρtϵ

11: end for
12: x,h← p(zx,0, zh,0|zx,1, zh,1, fx, fh)
13: return ⟨x,h⟩

G.1 SCAFFOLD SPLIT QM9

We utilized the open-source software, RDkit (Landrum et al., 2016), to examine the scaffold and
ring of each molecule. QM9 dataset 1 comprises a total of 130,831 molecules, encompassing 15,661
unique scaffolds. Molecules lacking a scaffold were denoted as ‘-’ and included in the total scaffold
count. The dataset was divided based on scaffold frequency. Specifically, the in-distribution subset
contained 100,000 molecules and 1,054 scaffolds. The OOD I subset included 15,000 molecules
and 2,532 scaffolds, while the OOD II subset consisted of 15,831 molecules and 12,075 scaffolds.

Figure 4(a) presents the division’s schematic diagram. Figure 4(b) displays the logarithmic his-
togram of the scaffolds in each dataset segment. It is evident that the in-distribution dataset contains
the most frequent scaffolds, primarily concentrated above 100. The frequency of scaffolds in the
OOD I dataset ranges between 10 and 100. In contrast, the scaffolds in the OOD II dataset are pri-
marily concentrated within 10, with most appearing only once. Figures, SMILES, and frequencies
of some example scaffolds in each sub-dataset are given in Figure 5.

1https://springernature.figshare.com/ndownloader/files/3195389
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100,000 Molecules
1,054 Scaffolds.

15,000 Molecules
2,532 Scaffolds.

15,831 Molecules
12,075 Scaffolds.

Class I Class II Class III

(a) The number of molecules and scaffolds in distribution, OOD I, and OOD II of the Scaffold-Split QM9
data set.
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Figure 4: Scaffold-Split QM9

Scaffold Split
Source 
Dataset

C1CN1C1C2C3CN2C13C1C2C1N1CC21C1CC2(C1)CN2C1C[NH]CN1C1=CCCC1SMILES
372224631618913331333Frequency

Scaffold Split
Target 

Dataset I

C1COCCN1C1CCNCC1C1CC2C3CN2C13C1CC1C1COC1C1CC(C2CC2)O1C1C2OC3C1C3O2SMILES
402424567045Frequency

Scaffold Split
Target 

Dataset II

C1CN1CC1C2CN1C2C1CN=C(OC2CC2)C1C1CC1OC1C2CC1C2C1CC1CC1C2CC1O2C1CC1CC1C2CC1C2C1C2OC1C2CN1CC1SMILES
111111Frequency

Figure 5: Scaffold Examples of QM9 Split by Scaffolds.

G.2 RING NUMBER SPLIT QM9

The QM9 dataset could categorize molecules into nine groups based on the number of rings, ranging
from 0 to 8. As the number of rings increases, the quantity of molecules correspondingly decreases.
We partition the QM9 dataset into two subsets based on ring count. The in-distribution dataset
comprises acyclic molecules and those with 1 to 3 rings, while the OOD dataset includes molecules
with 4 to 8 rings. Figure 6 presents a schematic diagram illustrating example molecules with 0 to 8
rings.
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Figure 6: Ring Examples of QM9 Split by Ring Number.

H GEOM-DRUG DATASET

GEOM-DRUG (Geometric Ensemble Of Molecules) dataset (Axelrod & Gómez-Bombarelli, 2022)
encompasses around 450,000 molecules, each with an average of 44.2 atoms and a maximum of 181
atoms2.

H.1 RING NUMBER SPLIT GEOM-DRUG

The GEOM-DRUG dataset classifies molecules into sixteen categories based on the number of rings,
ranging from 0 to 14 and 22. As the ring count increases, the number of molecules correspondingly
decreases. The dataset is partitioned into two subsets according to ring count: the in-distributional
dataset, which includes molecules with 0 to 10 rings and a count exceeding 100, and four OOD
datasets, which comprises molecules with 11 to 14 and 22 rings. Figure 7 provides a schematic
representation of the molecule distribution by ring number.
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Figure 7: Ring Distribution of GEOM-DRUG dataset.

I GEOM-LINKER DATASET

The GEOM-LINKER dataset for linker design is constructed by (Igashov et al., 2024) based on
GEOM-DRUG. The authors decomposed the molecule into three or more fragments with one or
two linkers connecting them. The dataset contains 41,907 molecules and 285,140 fragments, and
the original dataset is randomly split into train (282,602 examples), validation (1,250 examples), and
test (1,288 examples) sets. Atom types considered for this dataset are C, O, N, F, S, Cl, Br, I, and P.

We present the distribution of molecules in GEOM-LINKER according to the number of rings in
Figure 8. The diagram illustrates the molecules with 3 to 5 rings are the majority and molecules

2https://dataverse.harvard.edu/file.xhtml?fileId=4360331&version=2.0
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Figure 8: Ring Distribution of GEOM-LINKER dataset.

with 8 to 12 rings exhibit data sparsity in the whole dataset. Thereby, we split the dataset according
to the ring numbers into in-distribution (0-5 rings, 280,879 samples) and OOD (6-12 rings, 4,263
samples).

J FULL RESULTS OF OOD RING-STRUCTURE MOLECULE GENERATION

We present the detailed quantitative evaluation results of ring adaptive molecule generation tasks in
Tables 8 and 9. The results show that the proposed method has dominant performance in all metrics,
including ring number proportion, validity, novelty, and success rate.

It is significant to note that the entire QM9 dataset comprises only 36 eight-ring molecules. When
the proposed algorithm utilizes the ring structures of these 36 8-ring molecules as input, the target
validity reaches an impressive 72.2%, and the novelty is as high as 80.9%. Considering that there
are only 36 fundamental 8-ring structures, the uniqueness is slightly lower (27.4%). Nevertheless,
the generation of 10,000 molecules resulted in 2,388 valid, unique, and entirely novel eight-ring
molecules, which is a substantial breakthrough compared to existing methods (even those models
trained on eight-ring molecules) that failed to discover any new eight-ring molecules.
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Table 8: Results of molecule proportion in terms of ring-number (P) and molecule validity (V) The
best results are highlighted in bold. QM9 only contains 36 eight-ring molecules and the proportion
for eight-ring is nearly 0.

0 1 2 3 4 5 6 7 8 Averaged
Method P (%) -

QM9 10.2 39.3 27.6 15.1 4.4 2.7 0.6 0.2 0.0 -
EDM† 10.5 39.8 28.0 14.5 4.0 2.9 0.2 0.1 0.0 -
GeoLDM† 12.0 38.6 27.0 15.3 4.6 2.2 0.2 0.1 0.0 -
EDM‡ 12.1 44.1 29.8 11.8 1.7 0.5 0.0 0.0 0.0 -
GeoLDM‡ 2.8 41.5 32.1 15.7 4.7 2.7 0.3 0.1 0.0 -
C-EDM‡ 98.9 94.2 80.8 64.4 12.6 26.8 0.3 0.1 0.0 -
C-GeoLDM‡ 97.1 89.4 74.2 52.4 22.3 22.7 0.9 0.2 0.0 -
EEGSDE‡ 98.4 92.2 77.6 58.2 14.1 17.6 0.3 0.0 0.0 -
MOOD‡ 80.7 87.1 86.1 73.3 34.1 32.3 10.3 0.2 0.0 -
CGD‡ 82.3 84.8 86.2 83.6 34.4 22.4 10.3 10.1 0.0 -
GODD‡ 99.9 99.8 99.1 97.6 92.5 89.7 78.7 88.2 82.1 -

Target Valid (%)
QM9 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7
EDM† 10.8 36.1 26.7 13.9 4.0 2.3 0.2 0.1 0.0 10.5
GeoLDM† 11.2 36.2 25.2 14.3 4.3 2.0 0.2 0.1 0.0 10.4
EDM‡ 11.4 41.4 28.0 11.1 1.6 0.5 0.0 0.0 0.0 10.4
GeoLDM‡ 2.7 38.8 30.0 14.7 4.4 2.6 0.3 0.1 0.0 10.4
C-EDM‡ 86.6 85.4 74.9 59.8 12.1 23.3 0.2 0.1 0.0 38.0
C-GeoLDM‡ 86.2 79.6 65.8 48.1 20.4 20.7 0.9 0.2 0.0 35.7
EEGSDE‡ 96.7 92.1 77.2 58.0 13.9 17.4 0.3 0.0 0.0 39.5
MOOD‡ 75.5 81.7 80.6 68.9 32.0 30.1 9.6 0.1 0.0 42.1
CGD‡ 77.0 79.6 81.1 78.4 32.3 20.9 9.5 9.5 0.0 43.2
GODD‡ 31.7 91.4 91.4 92.1 85.3 85.2 69.5 82.5 72.2 77.9
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Table 9: Results of molecule proportion in terms of novelty (N) and success rate (S). The best results
are highlighted in bold.

0 1 2 3 4 5 6 7 8 Averaged
Method Target Novelty (%)
EDM† 7.1 23.6 17.5 9.1 2.6 1.5 0.1 0.1 0.0 6.8
GeoLDM† 7.0 22.4 15.6 8.9 2.7 1.3 0.1 0.0 0.0 6.4
EDM‡ 7.5 27.1 18.3 7.2 1.1 0.3 0.0 0.0 0.0 6.8
GeoLDM‡ 1.7 25.0 19.4 9.5 2.8 1.7 0.2 0.1 0.0 6.7
C-EDM‡ 57.1 59.7 54.2 44.2 9.9 20.1 0.2 0.1 0.0 27.3
C-GeoLDM‡ 63.3 61.6 53.3 40.1 17.3 18.3 0.7 0.1 0.0 28.3
EEGSDE‡ 63.9 61.4 53.0 42.5 9.9 14.1 0.3 0.0 0.0 27.2
MOOD‡ 50.0 53.9 53.6 44.4 20.6 20.0 6.3 0.1 0.0 27.6
CGD‡ 51.0 52.5 53.1 51.3 21.0 13.9 6.3 6.2 0.0 28.4
GODD‡ 96.6 51.3 55.6 60.2 69.5 63.5 71.5 83.4 80.9 70.3

Success Rate (%)
EDM† 6.5 21.9 16.2 8.4 2.4 1.4 0.1 0.1 0.0 6.3
GeoLDM† 6.4 20.6 14.4 8.2 2.4 1.2 0.1 0.0 0.0 5.9
EDM‡ 6.9 25.1 17.0 6.7 1.0 0.3 0.0 0.0 0.0 6.3
GeoLDM‡ 1.6 23.0 17.8 8.7 2.6 1.5 0.2 0.1 0.0 6.1
C-EDM‡ 48.1 53.8 50.0 40.5 7.9 16.8 0.2 0.1 0.0 24.1
C-GeoLDM‡ 54.6 54.6 46.9 36.8 15.4 15.6 0.6 0.1 0.0 25.0
EEGSDE‡ 54.7 54.7 46.9 39.5 9.5 12.2 0.2 0.0 0.0 24.2
MOOD‡ 45.9 49.8 49.4 41.0 18.9 18.3 5.8 0.1 0.0 25.5
CGD‡ 46.8 48.5 49.1 47.3 19.5 12.8 5.8 5.7 0.0 26.2
GODD‡ 25.9 43.4 46.2 50.4 53.8 41.0 46.1 34.1 23.9 40.5
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K VISUALIZATION

In this section, we provide additional visualizations of physical prior steered molecule generation
by GODD for OOD scaffold generation and ring number generation in Figures 9 and 10

As depicted in the two figures, the model consistently generates realistic molecular geometries with
OOD scaffolds or ring numbers.

Target Scaffold Generated molecules with target scaffold

Figure 9: Molecules Generated by GODD for Scaffold Adaptive Generation Under The Same Un-
seen Scaffold Condition.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

4 Rings

5 Rings

6 Rings

7 Rings

8 Rings

Figure 10: Molecules Generated by GODD for Ring Number Adaptive Generation For Unseen Ring
Numbers

22-ring Molecule in 
GEOM-DRUG

22-ring-structure as 
Domain prior

GADM

Figure 11: Molecules Generated by GODD for Ring Number Adaptive Generation For Unseen Ring
Numbers on GEOM-DRUG Dataset.
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L RELATED WORK

Molecule Generation Models. Prior studies on molecule generation focused on generating
molecules as 2D graphs (Jin et al., 2018; Liu et al., 2018; Shi et al., 2020). However, there has been a
growing interest in 3D molecule generation. G-SchNet (Gebauer et al., 2019) and G-SphereNet (Luo
& Ji, 2022) utilize autoregressive techniques to construct molecules incrementally by progressively
connecting atoms or molecular fragments. These frameworks necessitate either a meticulous formu-
lation of complex action space or action ordering.

More recently, the focus has shifted towards using Diffusion Models (DMs) for 3D molecule gener-
ation (Hoogeboom et al., 2022; Xu et al., 2023; Wu et al., 2022; Song et al., 2024). To mitigate the
inconsistency of unified Gaussian diffusion across diverse modalities, a latent space was introduced
by (Xu et al., 2023). To tackle the atom-bond inconsistency problem, different noise schedulers were
proposed by (Peng et al., 2023) for various modalities to accommodate noise sensitivity. However,
these algorithms do not account for generating novel molecules outside the training distribution.

Out-of-Distribution Molecule Generation. OOD generation, although under-explored, is of
paramount importance, especially considering that molecules generated by machine-learning meth-
ods often exhibit a “striking similarity” (Walters & Murcko, 2020). In recent years, some pre-
liminary work has begun to use reinforcement learning (Yang et al., 2021) and out-of-distribution
control (Lee et al., 2023) to explore the generation of novel molecules. However, these methods
are still challenging when designing novel molecules in data-sparse regions with fragment shifts.
As proposed by (Lee et al., 2023), MOOD employs an OOD control and integrates a property-
predictor-based diffusion scheme to optimize molecules for specific chemical properties. Similarly,
CGD (Klarner et al., 2024) leverages unlabeled data to improve the generalization of guided diffu-
sion models. However, these predictor-based OOD methods fail to generate novel molecules with
ODD fragments that are sparse for training a classifier.

Fragment-Based Drug Design. The discovery of new molecules is crucial across various fields,
and there are four primary approaches to this task (Murray & Rees, 2009): (1) searching from an
existing molecule, (2) developing from a natural product, (3) high-throughput screening, and (4)
fragment-based drug discovery (FBDD). Among these, FBDD has gained significant importance
and interest over the past decades due to its higher efficiency compared to other methods (Murray
& Rees, 2009). Typically, fragments are selected based on the “rule of three” (Congreve et al.,
2003) criteria and thereby can be grown, linked, or merged to develop potential molecules (Bian &
Xie, 2018). Recently, there has been a growing trend in enhancing FBDD with machine learning
techniques (Wu et al., 2024; Igashov et al., 2024; Guan et al., 2024). However, these methods often
overlook the issue of fragment sparsity in datasets, highlighting the need for an OOD molecular
generative model capable of producing realistic molecules in data-sparse regions.

M IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of generative Artificial Intelligence
(AI) for scientific fields, such as material science, chemistry, and biology. The obtained experi-
ence/knowledge will greatly boost generative AI technologies in facilitating the process of scientific
knowledge discovery.

Machine learning for molecule generation opens up possibilities for designing molecules beyond
therapeutic purposes, such as the creation of illicit drugs or dangerous substances. The potential
for misuse and unintended consequences necessitates strict ethical guidelines, robust regulation, and
responsible use of these technologies to prevent harm to individuals and society.

N ACRONYMS LIST

ACRONYMS

GODD Geometric OOD Diffusion Model. 1–10, 18, 20, 21, 25–27

EAAE Equivariant Asymmetric Autoencoder. 4–6, 9, 15, 17–21
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PSDM Physical Prior Steered Diffusion Model. 6, 18–21
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